

Summer of Sim

Simulation of the DØ Luminosity Monitor

Joseph Tuggle

The Luminosity Monitor

August 8th, 2002

The Luminosity Wedges

The Luminosity Monitor is a Timing Detector

- We see the time difference between hit coincidences in the North and South counters.
- Timing information gives us spatial information, so we can use the LM as a vertex detector as well.

DØSim Digitization

- DØGSTAR
 gives us
 Energy
 Deposited and
 Time of Flight
- Need to convert that to electronics output

Electronics Output

TC3	TC2	TC1	TC0	
TC7	TC6	TC5	TC4	
TIME		CHARGE		

TIME

000 V	TDC (12 Bits)
-------	---------------

CHARGE

Energy	7.7	Correction
(8 bits)	V	(7 bits)

Fast Monte Carlo

Find out:

- Vertexing ability
- Efficiency
- Acceptance

Fast Monte Carlo: Event Generation

- Generate events using Pythia
- Create one to three primary vertices

Fast Monte Carlo: Event Generation

- Generate Z of vertices with Gaussian of width 25cm (consistent with beam)
- Accept only long-lived, charged particles (e.g., π[±], K[±], p, pbar)
- Extrapolate paths to the Luminosity Monitors

Fast Monte Carlo: Z Reconstruction

- Reconstruct up to three vertices
- Least Squares fit of z_{vertex} and t_{vertex} based on time of hits
- Reconstruction width is 2.5cm

Fast Monte Carlo: Confidence Level

- If the confidence level is below 1%, split the vertex
- Label a vertex "found" if it is within 9cm of a generated vertex.
- Finding rate is 95% for single vertex fits, 50% for two-vertex fits
- Could use confidence level of single-vertex fit as a multiple interaction flag

Fast Monte Carlo: (X,Y) Reconstruction

- Off-center beam gives non-uniform population of wedges
- The distribution can be represented as two circles, offset from each other
- The area difference vs. φ is a simple cosine function

Fast Monte Carlo: (X,Y) Reconstruction

Scalers vs. Phi

• Scalers:

$$A + B\cos(\varphi - C)$$

• Radial deviation:

$$R = 4.05*(B/A)$$

- X = R*cos(C)
- Y = R*sin(C)

Fast Monte Carlo: (X,Y) Reconstruction

- Appears to be a bias towards a small Y reconstruction
- Effect is less apparent in X

Status

- Digitization
 - Ready to implement electronics programming
 - Need to code digitization software to match electronics
- Fast Monte Carlo
 - Completed
 - Upgrades:
 - Better geometry for wedges
 - More accurate particle tracking
 - Better constant for radial beam deviation